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On the Stability of Bayes Estimators for Gaussian Processes

by
Ian N. McKeague

Abstract

We consider the Bayes estimator §., for a Gaussian signal process
observed in the presence of additive Gaussian noise under contamination
of the signal or noise by QN-laws, introduced by Gualtierotti (1979).
Upper bounds on the increase in the mean square error of §, over the
ninimum possible mean square error under contaminated noise or contaminated
signal are given., It is shown that the performance of &, 1is relatively

close to optimal for small amounts of contamination,
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1. Introduction.

The Bayesian approach to the robust estimation of a signal in the
presence of noise has been studied extensively in recent years. Some
authors, including Blum and Rosenblatt (1967), Solomon (1972), Watson
(1974) and Berger (1982) have discussed procedures which can be used
when only vague information concerning the prior distribution is avail-
able. Others, including Box and Tiao (1968), Masreliez (1975) and
Ershov and Liptser (1978) have constructed estimators which are robust
with respect to contamination of the noise distribution.

The purpose of the present article is to study the performance of
the usual Bayes estimator (denoted 6,) for Gaussian prior and additive
Gaussian noise under certain deviations from normality in either the
prior or the noise distribution. It is shown that the performance of
§o is relatively close to optimal for small amounts of contamination. The
main results of the paper give upper bounds on the increase in the mean
square error of 8, over the minimum possible mean square error under a
specific contaminated prior or contaminated noise distribution. These
results make it possible to assess the loss caused by the use of §, under
non-Gaussian conditions. The contaminated Gaussian laws used in this
paper are QN-laws (quasi-noise laws) which were introduced by Gualtierotti
(1979). QN-laws form an appropriate class of contaminated Gaussian laws
for some infinite dimensional models arising in commmication theory (see

Gualtierotti, 1980). Gualtierotti (1982) recently studied the stability




of signal detection under mixtures of Gaussian laws as well as QN-laws.
Contamination by Gaussian mixtures was shown to lead to worse behavior
than contamination by QN-laws. In the present paper attention is
restricted to contamination by QN-laws.

Section 2 contains some preliminary material on measures on locally
convex spaces and a derivation of the Bayes estimator for Gaussian prior
and Gaussian noise on infinite dimensional spaces. Section 3 contains a
discussion of QN-laws defined on locally convex spaces and a description
of the posterior distribution when the prior or the noise is a QN-law.
Upper bounds for the increase in the mean square error of §, over the
minimum possible mean square error under a QN-law prior or QN-law noise
are given in Section 4. Some examples, including an application to

Kalman filtering, are discussed at the end of the paper.

2. Preliminaries.

Let (S,S) and (T,T) be measursble spaces, a probability measure

¥xy
on SxT, Uy and My the projections of Myy© The conditional distributicn

"XI)" if it exists, is defined to be a probability measure on S for a.e.

duy(y) such that ux| (A) is measurable as a function of y for each
Y

o fixed A e S and

lyy (A% B) = IB "x|y(A)d“Y(ﬂ for all1 AeS and BeT.

[ It follows from the definition that wuy << uy a.e. duy(y). The following
5 lemma, which is proved using Fubini's theorem, states the abstract Bayes

formula of Kallianpur and Striebel (1968),.
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Lemma 2.1. Suppose that the conditional distribution "le exists and
d
the map (x,y) —> —;Y‘-I-IYA (y) is S x T measurable. Then the conditional

distribution "XI y exists and
dux qu x |
aux (x) = E"Y ») a.e, duXOuY(x,y) . | ‘

The probability measure uyy 1S to be defined through a prior dis-

tribution uy on S and a noise distribution uy on T. S is the
parameter space and T is the observation space. Let £:S x T+ T be
an S x T/T measurable map. Define Hyy by Mgy (A) =

y ) Uy {(x,y) : (x,f(x,y)) € A}. It is easily seen that "Y|x exists
and is equal to ugef"  where £ :T+Tis defined by £ (y)=£(x,y).
When "le exists it is called the posterior distriﬁﬁtion.

Before going further we need to make a brief detour through the
theory of probability measures on topological vector spaces. Let E
denote a locally convex topological vector space with topological dual
E', The cylindrical o-algebra on E 1is the o-algebra generated by E'
and is denoted o(E'). Let u be a probability measure on o(E') such

that f!_:<f,x>2 du(x) <=, for all £ in E'. Then u has a mean m ~.

and a covariance operator R and under mild conditﬂi\ons m belongs to

E and R maps E' into E (See Vakhania and Tarieladze, 1978).

Schwartz (1964) showed that if E is quasi-complete then each covariance
operator R:E' + E has a unique Hilbert space H, which is a vector subspace
of E, such that the natural injection j of H into E is continuous
and R = jj*. The Hilbert space H is called the reproducing kernel
Hilbert space (RKHS) of R. If the RKHS is separable with a CONS

_ D —— e d
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{e;» n 2 1} then the covariance operator admits a series representation
R=] je ©je, where (uBu)(f) = <f,wu, for ucE,feE', and the
seri:s converges to R in the strong operator topology:

Z;' <f,je > je, + Rf in E for all f in E'. A probability measure

u on o(E') is Gaussian if each f in E' is a Gaussian random
variable under u. The methods used in this paper depend on the existence
of a separable RKHS for the covariance operators of Gaussian measures.

For this reason, we assume throughout that E is quasi-complete and each

Gaussian measure u has a mean m € E, a covariance operator R:E' + E

-and a separable RKHS. Such a Gaussian measure is specified by u = N(m,R).

Now assume that u = N(O,RN) on o(E') with RKHS denoted H‘N and
injection jN:HN+ E, uy = N(mx,Rx) on o(HN), (8,8) = (HN,a(HN)),
(T,T) = (E,0(E')) and £f(x,y) = Jy(x) +y. Let L, denote the closure of
E' in LZ(E,uN). Uy:Ly + Hy the unitary operator defined by
Uyf = j;f, for £ in E'. Ry is a trace-class operator on HN so it
has a series representation R, = in T, ©,.%9,» where {en,nZI} is a
CONS in Hy, t 20 and tr(R) = Yt n <@ I denotes the identity
operator on HN

The following proposition, well known for finite dimensional spaces,
gives the posterior distribution ux| y for Gaussian prior % and

Gaussian noise Uy

Proposition 2.2. Let uy ® N(O,RN), By = N(mx,Rx). Then the posterior

distribution "xly exists as a probability measure on o(HN) and is

given by pxl)’ = N(hxly, Rxly). where

» 2 .:9_.{ [ 1 )] ( <en’mx> I )-1
™y T & Ter_ Uy (o] ) T Yep Ryy =R +R) "
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Proof. Denote [U;'l(en)](y) by o (y). The a_ are i.i.d. N(,1)

random variables under My SO that mxlyeHN a.e. du.(y). But,

Hye f;l ~ uy for each x e Hy (cf. McKeague, 1982, Theorem 2.1) so
u that by Baker (1976) Yy v . Thus mXIy € HN a.e. qu(y) and the
t pair ('xly'Rxly) defines a Gaussian measure on o(HN) a.e. duy(y).

Now check the conditions of Lemma 2.1. qu x exists and is equal to

(2

;" uNof;l_ The map (x,y) +—> du“x/duy(y) is a(HN) x o(E') measurable
since

i -1

s qu x duNof duN

: —ixy) ¢

3 dlly duN (y) qu )

[

= ) e ([U5 0] - = lg >

= d—u'u:'()') exp § {a (y) <e ,x>- & <e ,x>1},

o

vwhere the Radon-Nikodym derivative duN'.»f;1 / dw, is given in McKeague

(1982, Theorem 2.1), for instance. Now applying Lemma 2.1, the character-

istic functional ‘ﬁxly(u) s f dcu, x>y

Hy

of u, is proportional to IHN lim 2, (x)du, (x), where

ko

e uxly(x), for u e H'N' as a function - -

k
Zk(x) = exp nzl {i<en,u><en,x> . cn(y)«n,:o - K <en,x>2}.

Provided that {lk.k 2 1} is uniformly integrable, the result now follows
- from routine calculations since the <€ sX> N 2 1 are independent

. . N(<en,nx>, ‘l’n) random variables under Bye But
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3 fHlek(X)I duy (x) < IHN exp {an1 a, (¥)<o,,x>}du, (x)

§ k )

= exp (2 n§1 (@ 20T+ a (¥)<e ,my>)},

b which shows that {Zk,k 2 1} is a.e. qu(y) uniformly integrable with

' Tespect to uy, as required. a
3. N-LEWS.

oy

.

Let El and Ez be locally convex spaces. Suppose that u = N(m,R)
2 on o(Ei) with RKHS denoted H and injection j : H =+ El; also let
A: E »E

1 1 be a symmetric non-negative operator, a e R, ae E, and
]

2
J: l’.1 + 132 be a continuous linear map. Provided

el s fg (a2 + <A(J(x)-a), J(x)-a>)du(x) <=,
1

define a probability measure v on c(Ei) by v =y if ¢cla 0,

ATy~ M e Sden
e tante e . . S [

otherwise by the relation

F -g%(x) = c(a? + <A(J(x)-a), J(x)-a>).

:

- The measure v is called a QN-law and was introduced on Hilbert space by
r Gualtierotti (1979). If J*AJ has a separable RKHS then ¢ lew if and

‘ only if j*J*AJj is trace-class, and in this case

f claa2, tr(j*J*AJj) + <A(J(m)-a), J(m)-a>.

ij‘ It is always possible to assume that a is either zero or ome. We shall
X asswme that o = 1 and write v = QN((J,8,A),). When E, = E, and J
is the identity map write v = QN((a,A),u). Gualtierotti (1980) calculated
i::. the mean and covariance operator of v for the case of a separsble Hilbert
F ' space. It is possible to extend this result to separable Banach spaces as
E follows,

{

r
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Lemma 3.1. Suppose that !51 is a separable Banach space and J*AJ has
a separable RKHS. Then the mean n¢ and covariance operator 2 of v
are given by
i =m+u
R = R + 2cRI*AJR - uwBu,
where u = 2cRJ*A(J(m)-a).

Proof. (Sketch) Assume that m = 0 and consider just the evaluation of R

Let J*AJ = Jg @ e E!. Then, for f ¢ E
L& 8 By € 5y 1

lEl<f’x>2<M(X) »J(X) > du(x) = z IB <f:x’2 <gnpx>2 du(x),
n 1

so that we can reduce to evaluating integrals of the form

Jg <£,x>2<g,x>2du(x). Choose h ¢ E] such that j*(h), n21 isa
1

CONS for H. Define

k
#,x= ) <h ,x>Rh_, x e E,.
k n=1 n’ n 1

Then, by Tien (1978, Lemma 2), m X converges a.s. [u] to x. But

[El <f,1rkx>" <g,1rkx>" du(x) < UE <f.1rkx>8 du(z't)};’ {IE <g.ﬂkX>° du(x)}*
1 1
< 105 <Rf,£>2 <Rg,p>2,

k
since <f,m x> isa N(O, il <Rhn.f>2) random variable and
n=

k
2 <Rhn,f>2 S <Rf,f>, It follows that {<f,wkx>2 <g,wkx>2 , k 21}
nal}

is uniformly integrable and the Lebesgue convergence theorem can be applied.

The integral ]E <f,1rkx>2 <g,1rkx>2 du(x) can be calculated using the fact
1

.-'..A-. . . - B ] "I'A'I-f' L. ~ - [P ] PP Y S AP W PP S

A\
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that <hn,x> , 21 is an i.i.d. N(0,1) sequence of random variables

with respect to m.

The next proposition shows that the posterior is a QN-law if either
the prior is Gaussian and the noise is a QN-law or the prior is a QN-law
and the noise is Gaussian. Let w, = N(O,RN). By = N(mx,Rx) as in
Section 2 and let uXIy denote the corresponding posterior distribution

given in Proposition 2.2.

Proposition 3.2. (i) If the prior is Hy = N(mx,Rx) and the noise is

vy = QN((a,A),uN) then the posterior is vxb, = QN((jN,y-a,A),uxly).
(ii) If the prior is v = QN((a,A),ux) and the noise

is = N(O,R,) then the posterior is vxb, = QN((a.A).uxly).

The proof of this proposition uses the following consequence of

Lemma 2.1.

Lemma 3.3. Let wuy. and Vyy be probability measures on S x T such thet
(a) By and Wy Wy
(b) "Y|x and \’le exist and "lewYIx a.e. dux(x);
(c) the maps (x,y) —> dvylx / d"Yl <) (xy) =—> qulx /dvy(y)

are S x T measurable. Then vx'y exists, "xly""‘xly a.e. qu(y) and

dvx duY d\’Y Lx( d\)xr
e 1 . Y) (

(x) = (y) x) a.e. du,0u.(x,y).
Toyly D " Ty Ty, Ty X

Proof. Using (a) and (b) get

dv

dv d d
Yix Yix "Y X Yy
(y) = ) 3—-L(y) FH-) a.e. duu(x,y)
Vy "\‘[x Ry Vy Xty
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so that, by (c), the function (x,y) }— deIx/ dvy(y) is S xT
measurable and "xly exists by Lemma 2.1. The proof is completed by

applying Bayes formula. 0

Proof of Proposition 3.2. (i) By Wy since "lelex for all x e HN

delx . .
(Y) = CN(I + <A(Y'a"JNx) ’Y'a‘JNx> ),

so that the map (x,y) +—> dvle/ d"le(y) is o(HN) x g(E') measurablec.
The map (x,y) +—> d"YIx/ qu(y) is o(HN) x o(E') measurable from the

proof of Proposition 2,2, Thus, by Lemma 3,3 v exists and

X]y
dv d
——)ﬂx(x) = d—:}(y) cN(l + <A(jNX-(y-a)).J'Nx- (y-a)>),

which shows that "xly = QN((jN.y-a,A),uxly). The proof of (ii) is similar. {]

4, Bayesian Robustness.

Lec & denote a decision rulc for estimating the true signal
X € HN 6§ is a measurable function from the observation space E into
the parameter space H'N For prior vy and noise N the mean square

error of & is given by
T(vy, vy 8) = IHNXE | -8l ZHN dvyy (X,7).

The following functions of v, and 2% will be used to measure the

X
robustness of a decision rule 6,: the increase in the mean square error
in using &, over the minimum possible mean square error,

A(vx,v »80) = r(vx,vN,Ge) - igf r(vx,vN,G),

and the ratio of the mean square error using 6, to the minimum possible

rean £auare error,
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!'(Vx.\)N, 60)

o(“x’“nOGO) = ]E—r'r_—w'c .

let &, be the optimal (in the mean square sense) estimator for Gaussian

prior By = N(mx.Rx) and Gaussian noise uy ® N(O.RN). Then 6,(y) = mXIy’
the posterior mean given in Proposition 2.2. The results of this section
give some upper bounds on A(vx.vN,G.) and o(vx,vN,co) for 1% and N

as QN-law contaminations of By and My respectively. First we evaluate

the mean square error of 6, under contaminated prior or contaminated noise.

Denote R1 = RXIy = RX(I + Rx)-l.

Lemma 4.1. (i) Let vy = QN((a,A) ,ux). Then
t(vx,uN,oSo) = tr(Rl) . ZcXtr(ARf),

-1
where °x = 1« trAﬂx + <A(mx-a),mx-3>.
(ii) Let vy *® QN((a,A,uN). Suppose that E is a separable
Banach space and A has a separable RKHS. Then
2
r(uy,vy80) = tr(R)) + 2c, tr(AR)),

vhere Ay = j*Ai. and c;ll = 1 ¢ tr(A) + <Aa,a>.

i Proof. (i)  F(vy,vy.Se) = IHN!E i myyy - x|R duy| (I dvy(x) . But

- T -1 <x-my,e >

xly © ** ngl Tt Uy (e - <xep> - _—'ﬁ"_}en’

i so that

: T . <x-m,,e >

f{ Sell mypy-xl zduylxcy)-nglcl—,,":)zlg{[uN‘cen)lcy)«x.en» n" Pduy |, ()
. T <x-my,e >2

! = 12 (1 + ——D— ’

- Lt a s
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since [%l(en)](y) - <o ,X> is a N(0,1) random variable under u

Y|x*
By Lemma 3.1
!HN <e n.x-mx>2d\ox(x) -t ¢+ 2cx1'n2<Aen,en>,
so that
( )= § (2 (e ta2 )
T(Vysly»r80) = 4 = & 2¢c.<Ae ,€ >
X ¥N ns1 1+Tn Tn Xn’"n

tr(R (1 + RYTY) + 2c,tr(AR 2(I + R))72).
(ii) is proved in a similar way.

The following theorem gives an upper bound on the increase in the mean
square error of 6§, over the minimum possible mean square error under a

contaminated prior distribution.

Theorem 4.2. Let Vy = QN((a,A),ux). Then

A(vx,uN,s.)sttcf lir,Ajj2 [trRxR1¢2cxtrARi+(104cx|| ARR, | || my-afl2],°

where cll = 1 + tr(AR)).

Proof. It is easily checked that A(vy,uy,80) '= IEII Tyly - m?(lyll2 dvy (y) .

By Proposition 3.2 and Lemma 3.1, m?(ly = mxb, + 2cx|y Rx‘yA(mx‘y-a). so that

A(vy,uy,8e) s 4c21’ IR Alj2Sg “"'xly'anzd"v(")'

Now consider

IR
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IE" mxb.‘a"z d"y(y) = !HNIE" ﬂx|y-8||2 d“Y'x(Y)de(x) .

“n -1
Jel mypy-oll duy) ) = | GF ()]0 - <o

<e

:mx‘v
ntn F d"le

+ <e -3> ¢+
n.xa

T <e ,mx-a>
. ngl (T"Ln)z (1 + {<e ,x-2> + —“—;—-—-—}2).

n
Use Lemma 3.1 to get
<e_,m,-a>
n*™
[HN{<en,x-a> + ——?‘-‘—lzd\ax(x) =
let n let )
TatE xRyARye 0> + kx(—;;-ken,kx.k(mx-a)xen,mx-» + C tnn)z <CpsTy=a>".

This yields

T
]E" mxl)"auzde(y) = 2 {Tnzuﬂn)“1 * 2‘:)((T:E::)2<R)(AR)(°n'en>

n21
+ 4cx<mx2(l¢kx)°len,mx-a><en,mx-a> + <en,mx-a>2}
s trR2(1sR) 1+ 20, erARD (1R + dcy | ARZ (1R M |l my-alP
¢ "IIIx°8|F »

and the result follows.

It is now possible to give an upper bound on @&(vy,u,80), and since

we are mainly interested in the effects of small amounts of contamination,

we state it in the following form.

U
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Corollary 4.3. Let vy = QN((a,eA),ux). where ¢>0. Then

all RANIZ [exRR) + | my-al|2]
tr(Rl)

O(Vyshiyo8e) S 1 + (1 + o(1))e?, as e»0.

In particular, @(vy,hy,80) =1 + 0(c?), e+0.

Proof. The result follows from Proposition 4.1, Theorem 4.2 and the identity

A(vysHysbe) '
Q(onl’“oso) =1+ H"xtunts‘) - A(VX,HN.GO) ]

The next theorem gives an upper bound on the increase in the mean square
error of 6, over the minimum possible mean square error under a contaminated
noise distribution., In order to use the known formulae (Lemma 3.1) for the
mean and covariance operator of a QN-law on E it is assumed for the remaindcr
of this section that B is a separable Banach space and A has a separable
RKHS,

Theorem 4.4. Let v = QN((s,A) "‘N)‘ Then

Aluy,vys80) s 83Ul RANZ [ErR R, o 2o trA R2]

s tr Rf(ANnxAN + A: * chA:) + (1 + & llag 1D <arpa,a0l,
vhere A, = jtAj, and c;I =1+ tr(AR).

Proof. By Proposition 3.2, "xly = QN((jN.y-a,A),uxly), and by Lemma 3.1,
Q .
"y * Xly * Txly P IAUNTy)yy + @) Thus
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A(“x!“ﬂn") bd IE" nx'y’ngly“z d\'y(Y)

T

s 4c3 [yl RyIAGyy|y~y *+ D12 doy ()
s 8z [l RAGNZ fll myy -myl12 dvy )
+ [l RySgAG -y + 8) |12 avy],

B~ AR

. It is easily checked that
h Jgll my, myl12 duyr) = e(ReRy) o 2eytr(ARD.

Note that n$-junx¢uand Pgnjukxjﬁ+l!"02m-m. o,
vhere u = -ZcNRNA(a). Hence
Jell RyIAG m-yea) 12 v, ()

= tr(RI3ARIAS) ¢ Il RIgAGe-w) |12
= e Ry ¢ A+ 2980 - IR SAG 2
o || R FgACa-w ||2
= tr(REARA ¢ A2+ 20AD ¢ | Riiga@ |2
: . 4CN<leﬁA(l) 'RIANj}.JA(O)>
E'. s tr(RAGRA, * A + 2040 + (1 + aqyll Al ) ARAS, 05,

- The result follows immediately.

~ .".-'.',".’tv.'.'

Corollary 4.5. let v = QN((a,€A) ,iy), where €>0. Then

8[ll RAI2 trRyR, « trRi(A“RxAN«oA:) + <ARAa,o>]

g ’(‘lxl“N’GO) €1+ tr(ﬁp (1‘0(1))510

as ¢+0. In particular, ®(uy,Vy.80) =1 ¢ 0(e?), ¢+0.

M { =3 a.% F e
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Examples

1. The one-dimensional case with contaminated prior. let X and N be
independent random variables with distributions vy = QN((nx,e) .ux) and

By = N(O,cﬁ) respectively, where Uy = N(nx,oi). Then Y = X+ N, A= eo:,
and Rx = oi /a: £ p, the signal to noise ratio., By Corollary 4.3

4
4o.0
E_(X-8,(Y))2 X 2
Inf EXSNZ 5 1 * TTepyz{ito(D)e
)

2. The one-dimensional case with contaminated moige. let X and N be
independent random varisbles with distributions u, = N(m,ol) and
2
W * QN((O.e).uN) respectively, where uy * N(O,cﬁ). Then A = €%»
Ry = o and by Corollary 4.5

-8.(Y))2
151' :Z:-G:Y)!')'T $1-. 30;:0[1 + (‘i%)z](lm(l))ez.
8

3. Kalmam filtering in the presence of comtamination. Let the signal
process X, and the observation process Y, be given by the stochastic

differential equations

1
dxt = -thdt + d"t

2
and dY‘t = Xtdt + d"t

1 and "2 are independent Wiener processes, >0, and

1 and W2,

(0<ts1l), where W

Xe is a N(O,%B) random variable which is independent of W
Then E = C[0,1], Hy = 120,11, jy : Hy * E is defined by

jN(f) (t) = f;f(s)ds. for feﬂN, te[0,1], Ry is the integral operator

with kernel min (s,t) and R, is the integral operator on L2[0,1] with

kernel %30-8|3-t|. 8o can be expressed as the solution of a stochestic
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differential equation for the interpolation of a Gaussian process (see

B* SOOI EASOA

Liptser and Shiryayev, 1978).

a) Contaminated signal, Let A be the identity operator on L2[0,1]
and let vy = QN((O,eA),ux), vhere uy = N(O,Rx). By Corollary 4.3
o(vx,u“,s.) <1+ 4 tr(Rx)(ho(l))ez. But tr(Rx) = 1/28 so that

O(uyamype) 1+ S(1eo(1))e2,

T it

! b) Contaminated noise. Let A be the natural injection of C{0,1] irto
C*[0,1] and let " QN((O.cA),u"). where Uy is Wiener measure on C[0,l].

1.2 .
Thus va /du"(x) = cN(l + e[oxtdt), where ¢y isa constant. By Corollary

- 4.5, 0(uy,vya8e) S 1 ¢ 28 tr(R)) (trA)2(1e0(1))e?, But Ay is the integral
i operator on 12 {0,1] with kernel min (s,t). Thus tr(AN) -%- and it

: follows that

g ' O(uyovysbe) S 1 ¢ -g-(loo(l))ez.
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